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A B S T R A C T   

Fast and accurate prediction of ambient ozone (O3) formed from atmospheric photochemical processes is crucial 
for designing effective O3 pollution control strategies in the context of climate change. The chemical transport 
model (CTM) is the fundamental tool for O3 prediction and policy design, however, existing CTM-based ap-
proaches are computationally expensive, and resource burdens limit their usage and effectiveness in air quality 
management. Here we proposed a novel method (noted as DeepCTM) that using deep learning to mimic CTM 
simulations to improve the computational efficiency of photochemical modeling. The well-trained DeepCTM 
successfully reproduces CTM-simulated O3 concentration using input features of precursor emissions, meteoro-
logical factors, and initial conditions. The advantage of the DeepCTM is its high efficiency in identifying the 
dominant contributors to O3 formation and quantifying the O3 response to variations in emissions and meteo-
rology. The emission-meteorology-concentration linkages implied by the DeepCTM are consistent with known 
mechanisms of atmospheric chemistry, indicating that the DeepCTM is also scientifically reasonable. The 
DeepCTM application in China suggests that O3 concentrations are strongly influenced by the initialized O3 
concentration, as well as emission and meteorological factors during daytime when O3 is formed photochemi-
cally. The variation of meteorological factors such as short-wave radiation can also significantly modulate the O3 
chemistry. The DeepCTM developed in this study exhibits great potential for efficiently representing the complex 
atmospheric system and can provide policymakers with urgently needed information for designing effective 
control strategies to mitigate O3 pollution.   

1. Introduction 

The ambient ozone (O3) exerts great damages in human health 
(Murray et al., 2020; Wang et al., 2020) and natural ecosystem (Grulke 
and Heath, 2020), leading to 365 thousand premature deaths worldwide 
in the year 2019. In China, O3 has gained increased attention recently 
due to worsened O3 pollution in recent years (Lu et al., 2020; Ding et al., 
2019a). The ambient O3 is mainly formed from two important 

precursors of nitrogen oxides (NOx) and volatile organic compounds 
(VOC) through complex photochemical processes in which both 
anthropogenic emissions and meteorological factors are involved (Gip-
son et al., 1981; Hu et al., 2021). Many studies suggested that the un-
expected O3 increases in China might be due to both unbalanced 
precursor (i.e., NOx and VOC) emission controls and meteorological 
conditions favorable for O3 formation (Wang et al., 2019a, 2019b; Ding 
et al., 2019a; Ma et al., 2019; Yang et al., 2021). Therefore, the design of 
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effective control strategies requires accurate and quick estimation of the 
O3 response to variations in emissions and meteorology. 

However, predicting the O3 response to emissions and meteorology 
variations is challenging due to the high nonlinearity associated with 
atmospheric photochemical processes (Seinfeld and Pandis, 2012). The 
chemical transport model (CTM) is the fundamental tool for simulating 
the O3 concentrations with the inputs of precursor emissions and 
meteorological factors across time and space. However, due to its large 
computational burdens associated with solving multiple differential 
equations (Brasseur and Jacob, 2017), most previous studies performed 
scenario analysis to investigate the influence of meteorology and emis-
sions separately, either by reducing emissions under constant meteoro-
logical conditions or by modulating meteorology under constant 
emissions (Gilliland et al., 2008; Xing et al., 2011a). The nonlinear 
response of O3 to emission changes has also been explored with 
advanced CTM-based tools (Dunker et al., 2002; Xing et al., 2011b; Wild 
et al., 2012; Kwok et al., 2015; Xing et al., 2017a; Turnock et al., 2018; 
Cohan et al., 2005), but these tools are generally resource intensive and 
limit the exploration of nonlinear O3 responses to combined variations 
in emissions and meteorology. For instance, studies have revealed that 
future climate change may challenge efforts to continually improve air 
quality (Stowell et al., 2017; Hong et al., 2019). Yet the question of how 
meteorology influences the effectiveness of emission controls still has 
not been well addressed. A method to efficiently quantify the influence 
of meteorological variations on the response of O3 to emission changes is 
therefore urgently needed. 

The reduced-form models have been gained great attention for their 
high efficiency in predicting atmospheric composition and estimating 
health effects. For example, the Intervention model for air pollution 
(InMAP) was designed to be an alternative to CTMs for estimating air 
quality response by solving a steady-state solution to reaction- 
advection-diffusion equation (Tessum et al., 2017). The response sur-
face model (RSM) was designed to create the nonlinear response of air 
pollution to precursor emissions through statistic regression based on 
multiple CTM simulations (Xing et al., 2011b). Such reduced-form 
models can be further implemented into integrated assessment model 
for optimizing the control strategy, and be also helpful for data assimi-
lation and emission inventory inversion based on the nonlinear response 
of concentrations to emissions provided by the reduced-form models 
(Xing et al., 2020a, 2020b). 

Deep learning technology, such as convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), has demonstrated skill in 
representing the highly nonlinear and interactive relationships in the 
atmospheric system (Cabaneros et al., 2019; Womack et al., 2019; Kelp 
et al., 2020). Our previous studies suggest that the air pollution response 
to emission changes can be inferred from the baseline concentrations of 
certain chemical indicators determined by the emissions and meteo-
rology (Xing et al., 2020c). It is expected that pollutant concentrations 
are also predictable from emissions and meteorology using deep 
learning methods. More importantly, deep-learning representations of 
the geophysical relationships of CTMs can substantially enhance the 
efficiency of predicting the O3 response by avoiding the complex nu-
merical calculations in CTM, and thus enable examination of the O3 
response to emissions and meteorology in a much higher dimensional 
space than traditional CTM studies. Such methods would provide 
essential information to policymakers to understand air pollution for-
mation mechanisms and design proper control policies to continually 
improve air quality. While, the major concern about the deep learning 
models is about its interpretability. Besides, the feature selection in deep 
learning models is also challenging for well reproducing the whole at-
mospheric system which has a great number of variables in the CTM 
simulation. 

Overall, the key questions are how to design a suitable neural 
network and how well such a network can replicate the CTM in revealing 
the inner relationships between O3 and emissions and meteorology. To 
address these questions, we propose a novel deep learning neural 

network structure (noted as DeepCTM) to reproduce the CTM-predicted 
O3. The properties of the new DeepCTM are examined for its ability to 
capture the nonlinearity of the O3 response to emissions and 
meteorology. 

2. Methods 

2.1. Dataset preparation 

To establish the dataset for DeepCTM training, we used the Com-
munity Multiscale Air Quality (CMAQ) model, version 5.2, which is one 
of the most commonly used CTMs for simulating the air pollutant con-
centrations (Appel et al., 2018). Meteorological fields were developed 
from simulations with the Weather Research and Forecasting (WRF) 
model, version 3.8 (Skamarock et al., 2008). The CMAQ and WRF model 
configurations are the same as in our previous studies (Ding et al., 
2019a, 2019b). The Carbon Bond 6 (Sarwar et al., 2008) and AERO6 
(Appel et al., 2013) mechanisms were used to represent gas-phase and 
particulate matter chemistry, respectively. Anthropogenic emissions are 
based on the bottom-up ABaCAS-EI inventory developed by Tsinghua 
University with a high spatial and temporal resolution (Zheng et al., 
2019; Xing et al., 2020d). Biogenic emissions were based on the Model 
for Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther 
et al., 2012). The performance of WRF and CMAQ for simulating 
meteorological variables and air pollutant concentrations has been 
thoroughly evaluated against observations in our previous studies (Ding 
et al., 2019a, 2019b). 

The study domain covers most of East Asia using 182 (row) × 232 
(column) horizontal grid cells with 27 km × 27 km resolution. In 
addition to national averages, our analysis also focuses on three key 
regions in China that suffer the most serious O3 pollution, including 
North China Plain, the greater Yangtze River Delta, and Southeast China 
(Fig. S1). 

2.2. DeepCTM structure 

Although deep learning models can act as a universal approximator 
to represent any nonlinear system (Csáji, 2001), it is quite challenging 
for them to approximate the complicated atmospheric system. The 
challenges are due in part to unsatisfactory performance in neural-based 
solvers for partial differential equations (Hsieh et al., 2019). To address 
these challenges, key inductive biases must be introduced (Goyal and 
Bengio, 2020) when designing the features and architecture of the deep 
learning model. 

Since the DeepCTM aims to mimic the CMAQ simulation, the fea-
tures are selected from the original inputs for CMAQ model. First, we 
limit the initial concentration fields to only two species including NO2 
and O3. Since VOC has too many species, including them will signifi-
cantly enlarge the computational demand and the error accumulation (i. 
e., the output from previous step will be used as the initial concentration 
for next step prediction). CO is not included for its relative long lifetime 
thus has little impacts at a short period of time. In addition, we carefully 
construct 10 feature maps that are sufficient to represent the response 
relationship between emissions and O3 concentrations. The feature data 
consist of two emission variables including total VOC emissions and NOx 
emissions; six meteorological variables including planetary boundary 
layer (PBL) height, wind speed (WS), short-wave radiation (SWR), 
convective velocity scale (WSTAR), 2-m temperature (T2) and humidity 
(Q2); transport fluxes including U- and V- direction winds (UV-wind) 
which represent the movement between neighboring grid cells following 
the horizontal wind direction; and a time-independent variable terrain 
height (normalized with mean 0 and variance 1) to represent the 
geographical information. The feature data will be fed into the 
DeepCTM to mimic the CMAQ simulation. 

Second, we carefully design the structure of DeepCTM to capture the 
spatial and temporal relationships among local emissions, meteorology 
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and the concentrations to be predicted. Specifically, similar to our pre-
vious study (Huang et al., 2021), we use stacked convolutional layers to 
maintain spatial information through the network and better extract the 
exclusive characteristics from the inputs, and one long short-term 
memory (LSTM) to aggregate information from time series data to 
mimic the accumulation of pollutants from historical processes. Addi-
tionally, we use a U-Net branch which is a widely adopted pixel-to-pixel 
model to effectively utilize neighbor information. To stabilize the opti-
mization procedure, we employ two key components to smooth the 
energy landscape: (i) batch normalization of the activations (Santurkar 

et al., 2018) and (ii) skip connections to eliminate the problematic sin-
gularities in deep networks (Orhan and Pitkow, 2018). The detailed 
architecture is presented in Fig. 1. The 10 feature maps in past 6 h data 
are concatenated and fed into the LSTM with U-Net branch of a two- 
layer structure detailed in our previous study (Huang et al., 2021), 
and further combined with geography data and initial concentration at t- 
6 (i.e., 6 h before, yt-6) into the MLP (multiple layers of perceptrons with 
threshold activation) to predict the concentrations at t (i.e., yt). Here we 
set 6 h instead of 1 h as the model time step for the consideration that O3 
could be substantially changed during the 6 h periods, resulting in large 

Fig. 1. The model architecture of the DeepCTM for predicting O3 variations with emissions and meteorology. CNN: convolution network; LSTM: long short term 
memory; U-Net structure (2-layers): a u-shaped architecture with a down sample function (max pooling) and a deconvolution function (up convolution); MLP: 
multiple layers of perceptrons with threshold activation; pReLU: the parametric rectified linear unit is used as the activation function. 

Table 1 
Summary of training and testing dataset.  

Case Dateset name Anthopogenic emission Meteorological conditions and biogenic emission For training For testing 

1 e2017-base 2017 2017 baseline √  
2 e2017-double 2017 doubled 2017 baseline √  
3 e2050L-BCC_ssp126 2050 low 2050 ssp126 simulated with BCC model √  
4 e2050H-BCC_ssp585 2050 high 2050 ssp585 simulated with BCC model  √ 
5 e2050L-ensmean_ssp126 2050 low 2050 ssp126 ensembled with 5 models  √ 
6 e2050L-ensmean_ssp585 2050 low 2050 ssp585 ensembled with 5 models  √ 
7 e2050H-ensmean_ssp126 2050 high 2050 ssp126 ensembled with 5 models  √ 
8 e2050H-ensmean_ssp585 2050 high 2050 ssp585 ensembled with 5 models  √  
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discrepancy between the initial condition (one feature) and prediction 
(label) which is enough for the NN model to learn the influence of 
emissions and meteorological factors. More important, the number of 
accumulation steps for a whole day can be substantially reduced to well 
control the accumulation errors. The trained model can be deployed for 
either single step (no accumulation) or through multiple steps with the 
initialized conditions predicted from previous step. The single-step 

application can be helpful for identifying the driven factors for O3 for-
mation within 6-h period with high accuracy, while the multiple-step 
application can fully replicate the CMAQ simulation with moderate 
accuracy, since it can predict the O3 concentration just using the inputs 
for CMAQ simulation with high efficiency (i.e., a few seconds with well- 
trained DeepCTM compared to hours of simulation with CMAQ). 

 A typical winter week (January 21-27) A typical summer week (July 21-27) 

(a) 
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Fig. 2. DeepCTM performance in predicting O3 variations with emissions and meteorology (test: Case #4).  
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2.3. Training and testing 

We conducted WRF-CMAQ simulations for eight cases based on 
different combinations of emissions and meteorological conditions, as 
summarized in Table 1. In addition to the base-year simulation of 2017 
(Case 1), we conducted simulations with doubled 2017 emissions (Case 
2), as well as with various future emissions and meteorological condi-
tions downscaled from the simulation of global climate models (Case 
3–8) to explore the domain transfer capabilities of DeepCTM (Liu et al., 
2021). 

We selected two future pathways of a shared socioeconomic pathway 
126 (ssp126) and a reference fossil fuel scenario (ssp585) to represent 
low- and high-level global warming conditions in 2050, as detailed in 
Liu et al. (2021). The anthropogenic emissions in 2050 at both low and 
high levels are used to represent the variation of emissions. The com-
parison of the distribution of feature data in base and future years (Case 
1, 3–4) is given in Fig. S2-S3. In general, most features exhibit similar 
spatial and temporal distributions, while the emissions in the 2050-low 
case are much smaller (by 60–80%) than in the 2050-high and 2017 
cases, and the 2-m temperatures in 2050s are higher (by 1-2 K) than in 
2017 (Liu et al., 2021). 

The hourly data of the first 7 days in each month of Case 1–3 (i.e., 
total 6048 records) are used for training, to better represent the varia-
tion of emissions from high to low levels and change of meteorology 
from current to future warming conditions. The remaining days of Case 
1–3 as well as all days in Case 4–8 are used for testing. We did not select 
additional datasets for training due to the limited GPU memory (the task 
was accomplished on a NVIDIA DGX station with maximum capacity of 
128 GB). 

We randomly cropped the feature maps by the size of 60 for data 
augmentation to improve the performance of the CNN in dealing with 
the low-level task. That is because the atmospheric process mainly 
happens within certain distance in an hour, implying that the neighbor 
grid cells are more important rather than the one far away from the 
target (low-level task). In addition, using random cropping can enhance 
the variation of the training samples, also significantly reduced the 
memory requirement during the training by avoiding using high- 
resolution maps. 

The Mean Squared Error loss was used for training, with 5000 epochs 
which is sufficient to achieve good performance in both training and 
testing. The learning rate starts from 0.001 and linearly decay to zero at 
the end of training. The loss variation of the training process is given in 
Fig. S4. One thing should be noted that since the training loss is 
computed over the cropped maps but the test loss is computed over the 
entire map, therefore the trend of loss curves is more meaningful than 
the quantitative comparison between training and test loss. 

We have trained our model with both normalized and unnormalized 
data, and the performance gap is marginal. Considering the importance 
of feature on prediction is examined by through a certain amount of 
perturbation, we didn’t normalize the feature data except for terrain 
height. 

We calculated model performance statistics using the normalized 
mean bias (NMB), the root mean square error (RMSE), and R-squared 
(R2). Model performance is also thoroughly examined through its ability 
to characterize the nonlinear response of O3 to emission and meteoro-
logical factors. 

3. Results 

3.1. Performance evaluation for predicting the temporal and spatial O3 
patterns 

After 5000 epochs, the trained DeepCTM can well reproduce the 
CTM-simulated hourly O3 variation across the whole year. The RMSEs 
and NMBs for the training dataset are 3–4 ppb and ± 1% respectively, 
and R2 values are very close to 1 (see Fig. S5). The RMSEs for the testing 

dataset (4–5 ppb) are slightly worse than for the training dataset but the 
NMBs are still within ±1%. Such good performance in both the training 
and testing dataset suggest that the DeepCTM has good generalization 
capabilities. 

We further applied the trained DeepCTM to Case 4 with completely 
different emissions and meteorological conditions from the training 
dataset (Case 1–3). As presented in Fig. 2, the results suggest that the 
DeepCTM can well reproduce the spatial distribution of CTM-simulated 
O3, as demonstrated by the comparison of two representative days from 
the testing dataset (i.e., the 21st day in January and July, which 
represent winter and summer, respectively in Case 4). The DeepCTM 
predictions for O3 at the next 6 h (no accumulation, Fig. 2b) agrees very 
well with the CTM predictions, with RMSEs and NMBs within 4 ppb and 
± 1%, respectively, and R2 values close to 1. 

Due to the chaotic nature of the atmospheric system (Brasseur and 
Jacob, 2017), a small error in the initial condition can be amplified in 
the subsequent prediction steps, which creates challenges for any time- 
series prediction for the atmosphere system. To further examine the 
model performance in predicting O3 through a long-time period rather 
than at the sixth hour as set in the training process, we use the prior- 
predicted O3 and NO2 as the initial conditions to feed into the predic-
tion for the following steps. As the DeepCTM integration proceeds over 
multiple time steps, the small errors for individual steps can accumulate 
slightly (Fig. 2a). However, the implementation of LSTM can well con-
trol the error accumulation within certain range. The RMSEs increase to 
5.4 ppb at the 12th hour (through 1 time accumulation, Fig. 2c), and 
5–6 ppb at the 24th hour (through 3 time accumulation, Fig. 2d). 
However, the RMSEs are kept around 5–6 ppb in the following pre-
dictions for days 2–7 (through 7 to 27 time accumulation) (Fig. 2e-g). 
The NMBs also continually increase with the time integration but remain 
within 10% (the largest NMB values occur at low baseline O3 levels) 
during the 7 day period (Fig. 2a), suggesting that implementation of the 
recurrent network structure like LSTM can well reduce the rate of error 
accumulation; though error accumulation remains as the biggest chal-
lenge for long-time prediction with any time-accumulation based 
method like DeepCTM. 

We also examine the trained DeepCTM in predicting the simulation 
of other cases (Case 5–8) with the variation of emissions and meteoro-
logical conditions (Fig. S6–7). In general, the DeepCTM can also well 
capture the magnitudes and range of hourly O3 concentrations across all 
cases, with acceptable NMBs (mostly within ±20%) (see in Fig. S6), even 
though the prediction is initialized only at the first 6 h of each month (i. 
e., multiple steps with accumulation). Relatively worse performance 
with larger NMB is shown in Case 2, 4, 7 and 8 simulated with higher 
NOx emissions which lead to extremely low O3 values in winter (strong 
VOC-limited) as the small denominator for NMB calculation. Surely the 
performance of DeepCTM can be further improved by using a wider 
range of emission data for training to better represent these conditions. 
The DeepCTM can also well capture the spatial distribution of O3 con-
centration even through a whole month accumulation, with small RMSE 
(2–3 ppb) and high R2 (>0.9) (Fig. S7). That implies the DeepCTM can 
mimic the CMAQ simulations just with its inputs (initial condition at the 
first 6 h and meteorological data) continually for the whole months. 

3.2. Identification of the factors that dominate O3 diurnal variation 

Lack of interpretability is one shortcoming for most machine 
learning-based models; however, the ability of the DeepCTM in pre-
dicting O3 can be explored through sensitivity analysis by modulating 
the input features. Specifically, the importance of each feature for the 
DeepCTM prediction can be quantified by the change of the predicted O3 
associated with a change in the feature. To better understand how the 
DeepCTM can capture the change of O3 from Case 1 to Case 4 (Fig. S8), 
we quantify the contribution from each input feature to the change of O3 
prediction from Case 1 to Case 4. A series of hypothetical cases were 
conducted by using data for one feature from Case 4 with the remaining 
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features kept the same as in Case 1, and repeating the process for all 
features. Therefore the difference between the predicted O3 in the hy-
pothetical case and Case 1 can be regarded as the individual contribu-
tion from the feature modulated in the hypothetical case. The results 
show that the decreased O3 in southern China is mainly driven by the 
change of short-wave radiation (∆SWR) and flux transport (∆UV-wind), 
while the increased O3 in northern (in January) and western China (in 
July) is mostly driven by the PBL height (∆PBL). Note that we modulate 
each feature one-by-one and thus the sum of the individual contributions 
is not equal to the total changes due to nonlinearity in the underlying 
system. 

To further examine the influence of individual factors on the diurnal 
variation of O3, we conducted a sensitivity analysis by modulating each 
feature one-by-one in predicting the O3 response with DeepCTM across 
two typical days (Fig. 3). The features of emission (Enox, Evoc), initial 
conditions (Ino2, Io3), flux transport (U_wind, V_wind) and meteoro-
logical factors (i.e., PBL, WS, SWR, WSTAR, and Q2) are set with a 20% 

reduction, except for T2 which are set with a reduction of 2 K. The small 
perturbations are within the range of variation in the training data to 
ensure its accuracy from the DeepCTM prediction. 

The 24-h DeepCTM predictions (initialized for each hour with no 
accumulation) suggest that the initialized O3 concentration is the 
dominant factor contributing to O3 across a day (Fig. 3). The influence of 
the initial condition of O3 decays slowly from morning till the noon and 
then increases again overnight, indicating the photochemical formation 
of O3 during daytime reduces the importance of the initial conditions. 
Such large influence of initial condition to the diurnal variation of O3 is 
mainly because of the single-step running without accumulation. The 
impacts of initial condition will be slowly reduced along with the 
accumulation, and the DeepCTM can also well capture such decay of the 
initial impacts (Fig. S9). 

The flux transport factor (U_wind and V_wind) influences O3 con-
centration changes through regional transport. In the three polluted 
regions, the O3 flux transport acts as a sink during daytime. This 

Fig. 3. The O3 sensitivities to the variation of individual factors (emission, initial condition, flux transport, and other meteorological factors are marked as red, green, 
blue, and cyan respectively; all factors are quantified through a 20% variation, except for T2 through a 2 K reduction). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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behavior is due to the transport of locally formed O3 to downwind areas 
that reduces O3 in the source region. Such phenomena are most pro-
nounced in summer. The flux transport can be also a source in polluted 
regions at night and in winter. That might be associated with the 
movement of NOx out of the polluted region which will reduce the O3 
loss at night due to NO titration and oxidant limitations and thereby 
enhance the O3 concentration. Such detailed chemical behaviors are 
well captured by the DeepCTM. 

The meteorology factors exert considerable influence on O3 mostly 
during daytime when O3 is formed through photochemical reactions. 
The 20% reduction in surface short-wave radiation mitigates O3 for-
mation during daytime. Similarly, the 2-K reduction in 2-m temperature 
slightly reduces O3 in most regions in winter due to its influence on 
chemical reaction rates. However, the opposite impact of 2-m temper-
ature on O3 occurs in the southern regions in summer likely because 
lower temperatures are associated with higher biogenic VOC emissions 
which can consume the O3 sharply under NOx-limited conditions. The 
20% reduction in PBL height and wind speed slightly increase the day-
time O3 concentrations, probably due to the enhancement of precursor 
concentrations that promote O3 formation, while they reduce O3 con-
centrations at night due to the transition of O3 chemistry to VOC-limited 
conditions. The reduction of convective velocity scale (WSTAR) also 
exhibits strong impacts on daytime O3 by reducing O3 in summer and 
increasing O3 in winter. Such behavior might be associated with the 
vertical transport of O3 and precursors. The reduced convective velocity 
scale leads to reduced O3 due to the weaker vertical mixing that trans-
ports upper-level O3 downward to surface in summer. However, the 
reduced convective velocity scale increases O3 in winter, probably due 
to the reduced NOx concentrations under VOC-limited regime. A similar 
finding is indicated by the seasonality of meteorological influences on 
O3 with initialized at first 6 h in each month (i.e., multiple steps with 
accumulation) (detailed in Text S1 and Fig. S10). 

The precursor emissions can either be a source or sink for O3 across a 
day. Surface NOx emissions contribute to daytime O3 formation but tend 
to reduce O3 at night when NOx consumes O3 through direct reaction. 
VOC emission reductions are always beneficial for reducing O3 in North 

China Plain and Yangtze-River-Delta, while they slightly enhance O3 in 
Southeast and all China in summer, probably due to the active VOC 
species associated with biogenic sources consuming O3 under low NOx 
conditions. Note that here we conducted the sensitivity analysis with 
emissions of each species individually adjusted. Simultaneous control of 
the precursors leads to a more complex O3 response, which is discussed 
next. 

3.3. Prediction of the nonlinear O3 response to precursor emission changes 

Using the DeepCTM, the isopleth of O3 concentration for variations 
in precursor emissions can easily be predicted as done with response 
surface models (RSMs) (Xing et al., 2011b, 2017a). The O3 responses to 
the change of NOx and VOC emissions by a range of ratios from 0 to 2 
(for zero-out to double emissions) were predicted by DeepCTM for two 
typical hours (6 am and 12 pm) in two typical days (Fig. S11) with 
single-step (no accumulation). In general, the responses of O3 to total 
NOx and VOC emissions are quite similar as we found in previous RSM 
studies (Xing et al., 2011b, 2017a, 2020c). The O3 chemistry is mostly in 
a NOx-limited regime in summer and at noon and in southern regions 
like Southeast, but in a VOC-limited regime in winter and in northern 
regions like North China Plain. The results about O3 chemistry regime 
are consistent with previous studies. For example, Wang et al. (2019a, 
2019b) and Lyu et al. (2019) found VOC-limited regime in eastern China 
and North China Plain. While, Li et al. (2013) reported NOx-limited 
regime in Pearl River Delta region at noon time. 

Such strong spatial and seasonal variation of O3 chemistry is also 
suggested from the O3 responses to the doubling of NOx and VOC 
emissions (from Case 1 to Case 2) (see Fig. 4). In general, the DeepCTM 
has successfully captured the decreased O3 in winter and increased O3 in 
summer in most of China. The model also well captured the increased O3 
in the south (with limited NOx emissions and strongly NOx-limited 
conditions) in winter as well as the decreased O3 in polluted regions like 
Northern China Plain (with abundant NOx emissions and at strongly 
VOC-limited conditions). Such changes are mostly driven by the 
doubling of NOx emissions. One thing should be noted that the double 

A typical winter week (Jan 21-27, 2017) A typical summer week (July 21-27, 2017)
Doubled NOx(DeepCTM) Doubled VOC(DeepCTM) Doubled NOx(DeepCTM) Doubled VOC(DeepCTM)

Doubled ALL(DeepCTM) Doubled ALL (CMAQ) Doubled ALL(DeepCTM) Doubled ALL (CMAQ)

Fig. 4. Prediction of O3 response to doubled emission of NOx and VOC (unit: ppbV, initializing at the first 6 h and accumulating through the whole week).  
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VOC might slightly decrease O3 mostly in the rural areas where with 
high biogenic VOCs which can consume the O3 sharply under NOx- 
limited conditions. However, uncertainties are still existed due to the 
DeepCTM limitation in dealing with the VOC speciation which need be 
further implemented into the model design. 

In addition to reduced requirements for CTM simulations for model 
development, another advantage of the DeepCTM over the RSM is the 
ability of the DeepCTM to explore the influence of meteorology varia-
tions on O3 chemistry. We conducted such investigation using the Peak 
Ratio (Xing et al., 2019a), which is an indicator of the chemical regime 
for the O3 response to precursor changes. The Peak Ratio is the NOx 
emission change ratio (range of 0 to 2 for zero-out to double emissions) 
corresponding to the maximum O3 concentration under conditions of 
baseline VOC emissions. O3 chemistry is in the VOC-limited regime 
when Peak Ratio < 1 and in the NOx-limited regime when Peak Ratio >
1. The influence of meteorology variations on O3 chemistry is examined 
by comparing the Peak Ratio response to the variation of each meteo-
rological factor. 

Fig. 5 presents the diurnal Peak Ratio across a day under seven levels 

of short-wave radiation, including the baseline (swr_base), 90% reduced 
(swr0.1), 70% reduced (swr0.3), 30% reduced (swr0.7), 30% increased 
(swr1.3), 70% increased (swr1.7), and 90% increased (swr1.9) radia-
tion. For baseline conditions, the Peak Ratio exhibits strong diurnal 
variation with the highest value at noon and lowest value at night. This 
behavior indicates that O3 chemistry is much more likely to be in the 
NOx-limited regime at noon and in the VOC-limited at night. The sum-
mertime Peak Ratio is also always higher than that in winter implying 
the stronger NOx-limited regime in warmer seasons when oxidants are 
abundant. 

The variation of short-wave radiation can significantly modulate the 
O3 chemistry across the day in both seasons. In general, reductions in 
short-wave radiation will lower the Peak Ratio leading the O3 chemistry 
toward the VOC-limited regime and increases in radiation will enlarge 
the Peak Ratio leading the O3 chemistry toward the NOx-limited regime. 
This behavior is because stronger short-wave radiation favors the 
photolysis of NO2 to form O3, whereas the consumption of OH by NO2 
(which terminates radical reactions and thus reduces O3 formation) is 
favored under conditions of weaker short-wave radiation. The change in 

Fig. 5. The O3 chemistry (indicated by the Peak Ratio) response to the variation of short-wave radiation across a day.  
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Fig. 6. The O3 changes due to NOx emission controls under different meteorological conditions across a year.  
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O3 chemistry associated with short-wave radiation is more pronounced 
in the North China Plain in winter, indicating that north regions and 
colder seasons (with less baseline radiation) are more sensitive to short- 
wave radiation than other regions/seasons. Meanwhile, meteorological 
factors in addition to short-wave radiation also influenced the O3 
chemistry (detailed in Text S2, Fig. S12–15). 

3.4. Seasonality of meteorological influences on O3 response to NOx 
emission reductions 

To examine the meteorological influence on the O3 response to NOx 
emission reductions, we compared the daily O3 response to NOx emis-
sion reductions in different months by considering 20%, 50%, and 80% 
NOx control (Fig. 6). We conducted this analysis by applying the 
DeepCTM with initialized at first 6 h on each day (multiple step with 
accumulation). 

Results suggest strong seasonality in the O3 response to emission 
changes. In general, NOx control is beneficial for reducing O3 in summer, 
but disbeneficial or ineffective for reducing O3 in winter. One thing 
should be noted that the benefits of NOx control highly depends on its 
reduction ratio, as the 20% control has very limited benefits on O3 
reduction while the benefits of NOx controls increase substantially when 
contorl ratio reachs 80%. Such findings are consistent with our previous 
study (Xing et al., 2018), demonstrating the strong nonlinearity of O3 
responses to NOx emission reductions due to the meteorological varia-
tions. Even in a single month, there are a wide range of O3 responses to 
NOx emission changes, with variations of 5–10 ppb and both negative 
and positive responses. These results demonstrate that meteorological 
variations can have a large influence on the control effectiveness even at 
a small temporal scale (e.g., day-to-day variations), which should be 
considered in designing effective control strategies. 

4. Conclusion 

The deep learning-based air quality simulator (i.e., DeepCTM) pro-
posed in this study exhibits its ability in reproducing the temporal and 
spatial patterns of O3 concentrations, as well as its inner correlations 
with precursor emissions and meteorological factors. One potential 
application of the DeepCTM is 7-day forecasting as the well-trained 
DeepCTM can accurately and efficiently predict the O3 variations with 
emissions and meteorology over 7 days of continual forecasting with 
limited accumulated errors. Since all the inputs of DeepCTM are ready 
with no additional CTM simulations (initial condition can be derived 
from current status fused with observations), the application of 
DeepCTM can significantly improve the real-time prediction of air 
quality and inform policymakers to mitigate air pollution, by designing 
effective control strategies from efficient prediction of multiple emission 
control scenarios (Xing et al., 2017b, 2019b). 

The DeepCTM also successfully identified the dominate factors that 
contribute to the O3 diurnal variation and captured the nonlinearity of 
O3 response to emissions under different meteorological conditions, 
exhibiting the advantage of high efficiency in identifying the dominant 
factor to photochemical formation over existing CTM-based methods. 
Besides, the emission-meteorology-concentration linkages implied by 
the DeepCTM are consistent with known mechanisms of atmospheric 
chemistry, indicating that the DeepCTM is also scientifically reasonable. 
These results suggest that the neural-network-based predictor can 
represent the basic physical and chemical processes of the atmosphere 
from the raw CTM-simulated data, which further implies an important 
fact that for systems that can be represented deterministically (e.g., at-
mospheric air pollution), we can generally mimic the full pathway using 
information from the initial and crucial features alone. 

This study also reveals that the implementation of time-series neural 
network structure will address the error accumulation problem which is 
one challenge for long-time prediction. The initial errors grow slightly 
during the time integration but then become stable even up to a week of 

accumulation. More accurate representation of the CTM structure would 
help to further improve the accuracy of DeepCTM. For example, in this 
study we simplified the vertical structure of the atmosphere by only 
selecting the surface features to represent the atmospheric system. 
Apparently, such simplification might lead to systemic errors in 
DeepCTM predictions, and inclusion of additional features in the neural 
network could be necessary to address these issues. This is a challenging 
task since the training with inclusion of the vertical parameters would 
require >10 times the computational resources, which might need 
further improvement of model design with implementation of dimen-
sionality reduction techniques, such as auto-decoder or 3-D CNN to 
exact the information from the vertical structure of the atmosphere. 
Also, since training is done using three CTM simulations, errors can 
occur in predicting conditions not included in the training set, like the 
extremely low VOC emissions in summer. Such biases can be reduced by 
incorporating CTM simulations for multiple emission control scenarios 
into the training dataset. In the current DeepCTM design, we did not 
include the concentration of individual VOC species due to the complex 
chemical mechanisms for VOCs that vary among CTMs. Incorporating 
additional species would increase the computational demand for 
training the DeepCTM and would significantly enlarge the influence of 
initial conditions and thus the error accumulation. The above issues are 
recommended for future studies. Nevertheless, the DeepCTM proposed 
in this study demonstrates its large advantage and potential for 
addressing the complicated atmospheric system, which can be contin-
ually improved with further efforts in both environmental scientific 
research and computational technologies. 
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